细胞仪可实现异质种群中精确的单细胞表型。这些细胞类型传统上是通过手动门控来注释的,但是这种方法遭受了对批处理效应的重现性和敏感性的缺乏。同样,最新的细胞仪 - 光谱流或质量细胞仪 - 创建丰富而高维的数据,其通过手动门控进行分析变得具有挑战性且耗时。为了解决这些局限性,我们引入了SCYAN(https://github.com/mics-lab/scyan),这是一个单-Cell细胞仪注释网络,该网络仅使用有关细胞测量仪面板的先前专家知识自动注释细胞类型。我们证明,SCYAN在多个公共数据集上大大优于相关的最新模型,同时更快,可解释。此外,SCYAN克服了几项互补任务,例如批处理效应,脱钉和人口发现。总体而言,该模型可以加速和简化细胞群体的特征,定量和细胞仪的发现。
translated by 谷歌翻译
One of the latest self-supervised learning (SSL) methods, VICReg, showed a great performance both in the linear evaluation and the fine-tuning evaluation. However, VICReg is proposed in computer vision and it learns by pulling representations of random crops of an image while maintaining the representation space by the variance and covariance loss. However, VICReg would be ineffective on non-stationary time series where different parts/crops of input should be differently encoded to consider the non-stationarity. Another recent SSL proposal, Temporal Neighborhood Coding (TNC) is effective for encoding non-stationary time series. This study shows that a combination of a VICReg-style method and TNC is very effective for SSL on non-stationary time series, where a non-stationary seismic signal time series is used as an evaluation dataset.
translated by 谷歌翻译
目的:扫描间动作是$ r_1 $估计中的实质性源,可以预期在$ b_1 $字段更不均匀的地方增加7t。既定的校正方案不转化为7T,因为它需要体线圈参考。在这里,我们介绍了两种越优于既定方法的替代方案。由于它们计算它们不需要体内圈图像的相对敏感性。理论:所提出的方法使用线圈组合的幅度图像来获得相对线圈敏感性。第一方法通过简单的比率有效地计算相对敏感性;第二种通过拟合更复杂的生成模型。方法:使用变量翻转角度(VFA)方法计算$ R_1 $ MAP。在3T和7T中获取多个数据集,在VFA卷的获取之间,没有运动。 $ R_1 $ MAPS在没有修正的情况下,建议的校正和(在3T)与先前建立的校正方案。结果:在3T时,所提出的方法优于基线方法。扫描间运动人工制品也在7T下降。然而,如果还包含位置特定的发射现场效果,则再现性仅在没有运动条件的情况下融合。结论:提出的方法简化了$ R_1 $ MAPS的扫描间运动校正,并且适用于3T和7T,通常不可用。所有方法的开源代码都可公开可用。
translated by 谷歌翻译